JFD:LMO应用瞄准电动工具、PHEV及电动自行车

高工锂电网
2015/4/16 11:56:21

酸锂最早是由M. M. Thackeray在1983年首次公开报道的,当时他在美国德克萨斯大学奥斯汀分校J. B. Goodenough课题组从事正极材料方面的研究工作。他后来一个很重要的工作是在阿贡国家实验室(ANL)发展出了富锂锰基层状固溶体正极材料(LMR-NMC,或者称为OLO),对于这种目前在国内被炒作得很火热的正极材料,相信读者并不陌生。LMO从首次报道至今已经过去三十多年了,是属于很“古老”的第一代正极材料。


上世纪九十年代是国际上LMO基础研究最活跃的时期,研究主要集中在LMO的晶体结构的认识以及合成工艺方面,比如原料、Li/Mn比、烧结温度时间与气氛等因素对材料电化学性能的影响。比较有意义的成果是发现尖晶石结构中的氧缺陷与提高Li/Mn比合成富锂LMO材料对改善锰酸锂的循环性能有一定效果。九十年代后期的研究主要集中在杂原子掺杂改性来改善LMO的高温循环与储存性能,在众多的掺杂元素中,发现Al的掺杂对锰酸锂高温电学化学性能的改善效果最为明显,这也是后来LMO产业化的基础之一。


进入21世纪以后,LMO表面修饰改性成为研究的热点领域。近些年,由于LMO产业化生产已经很成熟了,学术界对LMO的研究兴趣明显减退,近年在各种国际锂电学术会议上已经很少见到关于LMO的研究报道了。国际上一般认为,日本左贺大学的Masaki Yoshio (芳尾真幸)和东京大学的Atsuo Yamada (山田淳夫)这两个课题组对尖晶石锰酸锂的研究工作比较深入,其研究成果对工业界有较大的指导意义。


LMO具有原料成本低、合成工艺简单、热稳定性好、倍率性能和低温性能优越等优点,日韩主流锂电企业近些年一直使用LMO作为大型动力电池的首选正极材料。但是由于多方面的原因,高端LMO材料和LMO动力电池在国内一直没有能够发展起来。直到2012年底美国A123破产以后,国内锂电界才真正开始重视起LMO这个“老掉牙”的正极材料。


LMO的主要问题


对于LMO而言,高温循环和存储性能不佳是阻碍其大规模应用的最主要障碍。LMO高温性能不佳一般认为主要是由以下几个原因引起的:①Jahn-Teller 效应及钝化层的形成,使得经过循环或者存储后的LMO表面生成Li2Mn2O4或者Mn平均化合价低于3.5的缺陷尖晶石相。由于表面畸变的四方晶系与颗粒内部的立方晶系不相容,破坏了结构的完整性和颗粒间的有效接触,从而影响Li+扩散和颗粒间的电导性而造成容量损失。


②氧缺陷,当尖晶石缺氧时在4.0V 和4.2V 平台会同时出现容量衰减,并且氧的缺陷越多电池的容量衰减越快。此外,尖晶石结构中氧的缺陷也会削弱金属原子和氧原子之间的键能,而加剧锰的溶解。引起尖晶石锰酸锂循环过程中氧缺陷主要来自两个方面,一方面是合成条件造成尖晶石中氧低于标准化学计量比,另外一方面是在高温条件下LMO对电解液有一定的催化作用,使得尖晶石失氧。


温馨提示
本内容仅供佐思产研会员浏览
1.还没有注册?请 
2.如果已注册,请 
3.点击查看会员服务简介
会员登录
账  号
密  码
验证码验证码
温馨提示
您的付费会员已过期,请参照以下方式进行付费。
400-009-0050
reportservice@okokok.com.cn
chengyi

评论成功

2005-2015 版权所有(c) 佐思信息 京ICP备05069564号-4
全国服务热线:400-009-0050北京:010-82863481上海:021-64871266