AI Foundation Models’ Impacts on Vehicle Intelligent Design and Development Research Report, 2024
  • Mar.2024
  • Hard Copy
  • USD $2,700
  • Pages:160
  • Single User License
    (PDF Unprintable)       
  • USD $2,500
  • Code: GX010
  • Enterprise-wide License
    (PDF Printable & Editable)       
  • USD $4,300
  • Hard Copy + Single User License
  • USD $2,900
      

AI foundation models are booming. The launch of ChapGPT and SORA is shocking. Scientists and entrepreneurs at AI frontier point out that AI foundation models will rebuild all walks of life, especially tech-related fields. As a technological product, how will intelligent vehicles be changed by AI foundation models?

How foundation models will rebuild intelligent vehicles?

Following the "Automotive AI Foundation Model Technology and Application Trends Report, 2023-2024", a report which discusses impacts of AI foundation models on automotive industry from a macro perspective, ResearchInChina released the "AI Foundation Models’ Impacts on Vehicle Intelligent Design and Development Research Report, 2024", the second report which researches the impacts of AI foundation models on vehicle intelligent design and development in the such aspects as hardware, operating system, application function, and cloud big data.  

In 2023, Changan Automobile added AI edge and AI service layer to the original software-driven architecture (SDA) that includes L1-L6 layers. It can be seen that AI technology has affected most layers of intelligent vehicles: L3 EEA layer, L4 vehicle OS layer, L6 vehicle function application layer (including cockpit, connectivity and intelligent driving), L7 cloud big data layer, etc. The chassis part of L1 mechanical layer and the battery part of L2 power layer have actually involved AI application.  

AI影响 1_副本.png 

Currently, OEMs and Tier1s apply foundation models to part of vehicle intelligence, or to some link in the development process.

AI影响 2_副本.png

When viewing the general application trend of AI foundation models in vehicles, we also need to find an idea in the evolution of foundation models. According to the results of Tencent Research Institute, AI will evolve from the brain to AI Agent, and from CoPilot to autonomous driving. 

So, what is AI Agent?

Will foundation model/AI Agent replace OS/APP?

ResearchInChina accepts the view: AI foundation model is the OS, and AI Agent is the application. The development paradigm of intelligent products will be changed from conventional OS-APP ecosystem paradigm to AI foundation model-AI Agent ecosystem paradigm.  

AI影响 3_副本.png

What is AI Agent? It is an artificial intelligence (AI) system beyond simple text generation. AI Agent uses a large language model (LLM) as its core computing engine, so that it can make conversations, perform tasks, make inferences, and have a degree of autonomy. In short, AI Agent is a system with complex reasoning capabilities, memory and task execution methods. It is thus clear that NOMI GPT in NIO’s cockpit and Tesla FSD V12 are AI Agents in the cockpit domain and intelligent driving domain, respectively.   

AI影响 4_副本.png 

AI foundation models, a platform-level AI technology, include those launched by first-tier technology companies, such as ChatGPT and ERNIE Bot. Platform-level AI can serve as the technological foundation to empower operating systems in all aspects. It is regarded as the new kernel of next-generation operating systems. The kernel of conventional operating systems is mainly responsible for managing and scheduling the system's hardware resources like GPU and memory to ensure normal operation and efficient utilization of system. Yet with increasing user demand, AI systems need to parse many human-related personalized experiences. 

For personal knowledge base, people's location and status awareness, people's habits and hobbies and other personalization factors, conventional operating systems fall short of effective calculation and processing. We thus need a brand-new kernel to meet these requirements. The strength of platform-level AI foundation models is that they can manage and process multiple personal factors and help the operating system accurately recognize user intents. With such capabilities, fire-new operating systems can bring everyone an intelligent experience of “guess what you want and understand what you need.”  

In automotive cockpit applications, to achieve true personalization, automakers also need to further customize the AI foundation model according to the features of their own vehicle models and services, that is, AI Agent based on platform-level AI foundation model. We can see that Geely models (such as Jiyue and Galaxy) are based on Baidu ERNIE Bot-based cockpit systems, and Mercedes-Benz's in-car voice assistant are actually an AI Agent after being connected to ChatGPT. 

At present, intelligent driving AI Agent and cockpit AI Agent are separate. As cockpit-driving integration develops, they will tend to be integrated. However when considering cockpit-driving integration, OEMs and Tier1s cannot only consider integration at the hardware level, but also need to take into account operating system and vehicle system architecture, especially rapid evolution of foundation models/AI Agent models. 

Foundation model/AI Agent is currently a part of an operating system/APP ecosystem. Will it replace operating systems/APP models in the future? We think it's possible.

Foundation model-based agents will not only allow everyone to have an exclusive intelligent assistant with enhanced capabilities, but also change the mode of human-machine cooperation and bring broader human-machine fusion. There are three human-AI cooperation modes: Embedding, Copilot, and Agent.   

In intelligent driving, the Embedding mode is equivalent to L1-L2 autonomous driving; the Copilot mode, L2.5 and highway NOA; the Agent mode, urban NOA and L3 autonomous driving.  

In the Agent mode, humans set goals and provide necessary resources (e.g., computing power), then AI independently undertakes most of tasks, and finally humans supervise the process and evaluate the final results. In this mode, AI fully embodies the interactive, autonomous and adaptable characteristics of Agents and is close to an independent actor, while humans play more of a supervisor and evaluator role.

A large number of interactive operations that were originally enabled via IVI APP can now be achieved through natural interactions (voice, gesture, etc.) in the AI Agent mode. AI Agent even actively observes the inside and outside of the vehicle, makes a request inquiry, and can perform a task after being confirmed by the user.     

Therefore, the development of AI Agent is bound to make a mass of previous apps unnecessary and will have a disruptive impact on the development and application of intelligent cockpit and intelligent driving.

The current AI foundation models are not an operating system, but a paradigm and architecture of AI models, focusing on how to enable machines to process multimodal data (text, image, video, etc.). AI Agent is more similar to an AI application or application layer, which requires the support of the underlying operating system and hardware for operation. It is not in itself responsible for the basic management and resource scheduling of the computer system. In the future, AI foundation models are likely to be combined with OS to become AIOS.     

AI foundation models and AI Agent development have the following impacts on future operating systems:
Applets will disappear or evolve into AI Agent that calls foundation models;  
OS may evolve into the foundation model + computing chip core cluster OS architecture;
AI foundation models as a platform redefine and empower all kinds of industrial application scenarios, and give rise to more human-computer interaction-centric native applications, including autonomous vehicles, robots and digital twin applications.

1 Current Application and Future Trends of AI Foundation Models  
1.1 Introduction to AI Foundation Model Application 
1.1.1 Introduction to Various Types of AI Models
1.1.2 Multimodal Foundation Model VLM: Generic Architecture and Evolution Trends
1.1.3 Evolution Trends of Foundation Models Understanding 3D Road Scenarios  
1.1.4 Summary of Evolution Trends of Multimodal Foundation Models Understanding Intelligent Vehicle Driving Road Scenarios  
1.2 Current Application   
1.2.1 Classification of AI Foundation Model Applications 
1.2.2 Current Application of AI Foundation Models: Suppliers  
1.2.3 Current Application of AI Foundation Models: OEMs
1.2.4 Application of AI Foundation Models in Different Vehicle Layers 
1.2.5 Application Cases of AI Foundation Models in Different Scenarios 
1.3 Sora Text-to-Video Foundation Model
1.3.1 Autonomous Driving (AD) Foundation Model: World Model and Video Generation
1.3.2 Visual Foundation Model: Historical Review and Comparative Analysis
1.3.3 Sora: Fundamental and Social Value 
1.3.4 Sora: Introduction to the Basic System
1.3.5 Sora: Basic Functions
1.3.6 Sora: Advantages and Limitations
1.3.7 Sora: Case Studies
1.3.8 Interpretation of Sora Module (1)
1.3.9 Interpretation of Sora Module (2)
1.3.10 Interpretation of Sora Module (3)
1.3.11 Interpretation of Sora Module (4) 
1.3.12 Sora vs GPT-4: Comparative Analysis of Computing Power
1.3.13 Sora: Prediction for How to Drive Autonomous Driving Industry
1.4 Summary
1.4.1 AI Foundation Models Lead to Emergence Effects
1.4.2 Advantages of AI Foundation Models over Conventional AD Models
1.4.3 Impacts of AI Foundation Models on Operating Systems
1.4.4 Impacts of AI Foundation models on SOA/Simulation Design/SoC Design
1.4.5 Impacts of AI Foundation Models on Autonomous Driving Development
1.4.6 AI Foundation Model Evolution Trend 1
1.4.7 AI Foundation Model Evolution Trend 2
1.4.8 Enduring Problems of AI Foundation Models in Intelligent Vehicle Industry and Solutions 
1.4.9 Existing Problems of AI Foundation Models
1.4.10 Impacts of Sora on Intelligent Vehicle Industry and Prediction 
1.4.11 Enduring Problems in AI Computing Chip Design and Solutions 
1.4.12 AI Foundation Model: New Breakthroughs in Human-Machine Fusion Decision & Control 
1.4.13 Summary of AI Foundation Models’ Impacts on Vehicle Intelligence (1)
1.4.14 Summary of AI Foundation Models’ Impacts on Vehicle Intelligence (2)
1.4.15 Summary of AI Foundation Models’ Impacts on Vehicle Intelligence (3)
1.4.16 Summary of AI Foundation Models’ Impacts on Vehicle Intelligence (4)
1.4.17 Summary of AI Foundation Models’ Impacts on Vehicle Intelligence (5)
1.4.18 Summary of AI Foundation Models’ Impacts on Vehicle Intelligence (6) 

2 Impacts of AI Foundation Models on Vehicle Hardware Layer 
2.1 Impacts of AI Foundation Models on Chip Design and Functions
2.1.1 Impact Trends of AI Foundation Models on Chips (1)
2.1.2 Impact Trends of AI Foundation Models on Chips (2)
2.1.3 Impact Trends of AI Foundation Models on Chips (3) 
2.1.4 Changes LLM Makes to Intelligent Vehicle SoC Design Paradigm
2.1.5 Case 1
2.1.6 Case 2
2.1.7 NVIDIA's DRIVE Family Chips for Autonomous Driving 
2.1.8 Case 3
2.1.9 Impacts of AI Foundation Models on Cockpit Chip Design and Planning
2.1.10 Case 4
2.2 Impacts of AI Foundation Models on ADAS Sensor and Perception System Development
2.2.1 Foundation Model-Driven: Evolution Trends of Perception Capability Fusion and Sharing 
2.2.2 Case 5
2.2.3 Case 6

3 Impacts of AI Foundation Models on Automotive SOA/Operating System
3.1 Impacts of AI Foundation Models on SOA/EE Architecture
3.1.1 Driving Factors for EEA Evolution 
3.1.2 AI Foundation Model's Requirements for Computing Power Also Drive EEA Evolution 
3.1.3 Multimodal Foundation Model and EEA 3.0 
3.1.4 Development Directions of SOA in Terms of Foundation Model Agent Technology
3.1.5 Case 1
3.2 Impacts of AI Foundation Models on OS Design and Development
3.2.1 How AI Foundation Model Affects OS (1)
3.2.2 How AI Foundation Model Affects OS (2)
3.2.3 How AI Foundation Model Affects OS (3)
3.2.4 Case 2
3.2.5 Case 3
3.2.6 Case 4
3.2.7 Case 5
3.2.8 Case 6

4 Impacts of AI Foundation Models on Automotive Data Closed Loop/Simulation System 
4.1 Impacts of AI Foundation Models on Data Closed Loop
4.1.1 Data-driven Autonomous Driving System
4.1.2 Data-driven and Data Closed Loop
4.1.3 Application of Foundation Models in Intelligent Driving
4.1.4 Changan’s Data Closed Loop
4.1.5 Dotrust Technologies’ Cloud Data Closed Loop Solution SimCycle
4.1.6 Huawei’s Pangu Model and Data Closed Loop 
4.1.7 How Huawei Pangu Model Enables Autonomous Driving Development Platforms
4.1.8 SenseTime’s Data Closed Loop Solution
4.1.9 Juefx Technology Uses Horizon Robotics' Chips and Foundation Model to Complete Data Closed Loop 
4.2 Impacts of AI Foundation Models on Simulation System 
4.2.1 Autonomous Driving Vision Foundation Model (VFM)
4.2.2 Comparative Analysis of Sora and Tesla FSD-GWM 
4.2.3 Comparison between Sora and LLM
4.2.4 Comparison between Sora and ChatSim
4.2.5 Multimodal Basic Foundation Model
4.2.6 Generative World Model GAIA-1 System Architecture
4.2.7 Case 1
4.2.8 Case 2
4.2.9 Case 3
4.2.10 Case 4

5 Impacts of AI Foundation Models on Autonomous Driving/Intelligent Cockpit

5.1 Impacts of AI Foundation Models on Autonomous Driving
5.1.1 AD Foundation Model: Application Scenarios and Strategic Significance
5.1.2 AD Foundation Model: Typical Applications
5.1.3 AD Foundation Model: Typical Applications and Limitations 
5.1.4 AD Foundation Model: Main Adaptation Scenarios and Application Modes
5.1.5 VLM/MLM/VFM: Industrial Adaptation Scenarios and Main Applications
5.1.6 AD Foundation Model: Adaptation Scenarios Case 
5.1.7 AD Vision Foundation Model: Data Representation and Main Applications
5.1.8 Evolution Trends of Intelligent Driving Domain Controller
5.1.9 Application of Multimodal Foundation Model in Intelligent Driving

5.2 Application Cases of AI Foundation Model in Autonomous Driving 
5.2.1 Case 1
5.2.2 Case 2
5.2.3 Case 3
5.2.4 SenseTime Drive-MLM: World Model Construction
5.2.5 SenseTime Drive-MLM: Multimodal Generative Interaction
5.2.6 Case 4
5.2.7 Case 5
5.2.8 Case 6
5.2.9 Qualcomm Hybrid AI: Application in Intelligent Driving
5.2.10 Qualcomm AI Model Library
5.2.11 Case 7
5.2.12 Case 8

5.3 Impacts of AI Foundation Models on Cockpit Domain Controller
5.3.1 Multimodal Foundation Model
5.3.2 Impacts of Foundation Models on Interaction Design: Data Analysis and Decision
5.3.3 Impacts of Foundation Models on Interaction Design: Personalization through Autonomous Learning
5.3.4 Case 1
5.3.5 Case 2
5.3.6 Case 3
5.3.7 Case 4
5.3.8 Case 5

6 AI Agent and Automobile
6.1 What is AI Agent
6.2 Development Directions of AI Agent
6.3 Application Trends of AI Agent for Intelligent Vehicles
6.4 Application Cases of AI Agent in Vehicles
 

Smart Car Information Security (Cybersecurity and Data Security) Research Report, 2025

Research on Automotive Information Security: AI Fusion Intelligent Protection and Ecological Collaboration Ensure Cybersecurity and Data Security At present, what are the security risks faced by inte...

New Energy Vehicle 800-1000V High-Voltage Architecture and Supply Chain Research Report, 2025

Research on 800-1000V Architecture: to be installed in over 7 million vehicles in 2030, marking the arrival of the era of full-domain high voltage and megawatt supercharging. In 2025, the 800-1000V h...

Foreign Tier 1 ADAS Suppliers Industry Research Report 2025

Research on Overseas Tier 1 ADAS Suppliers: Three Paths for Foreign Enterprises to Transfer to NOA Foreign Tier 1 ADAS suppliers are obviously lagging behind in the field of NOA. In 2024, Aptiv (2.6...

VLA Large Model Applications in Automotive and Robotics Research Report, 2025

ResearchInChina releases "VLA Large Model Applications in Automotive and Robotics Research Report, 2025": The report summarizes and analyzes the technical origin, development stages, application cases...

OEMs’ Next-generation In-vehicle Infotainment (IVI) System Trends Report, 2025

ResearchInChina releases the "OEMs’ Next-generation In-vehicle Infotainment (IVI) System Trends Report, 2025", which sorts out iterative development context of mainstream automakers in terms of infota...

Autonomous Driving SoC Research Report, 2025

High-level intelligent driving penetration continues to increase, with large-scale upgrading of intelligent driving SoC in 2025 In 2024, the total sales volume of domestic passenger cars in China was...

China Passenger Car HUD Industry Report, 2024

ResearchInChina released the "China Passenger Car HUD Industry Report, 2025", which sorts out the HUD installation situation, the dynamics of upstream, midstream and downstream manufacturers in the HU...

ADAS and Autonomous Driving Tier 1 Suppliers Research Report, 2025 – Chinese Companies

ADAS and Autonomous Driving Tier 1 Suppliers Research Report, 2025 – Chinese Companies Research on Domestic ADAS Tier 1 Suppliers: Seven Development Trends in the Era of Assisted Driving 2.0 In the ...

Automotive ADAS Camera Report, 2025

①In terms of the amount of installed data, installations of side-view cameras maintain a growth rate of over 90%From January to May 2025, ADAS cameras (statistical scope: front-view, side-view, surrou...

Body (Zone) Domain Controller and Chip Industry Research Report,2025

Body (Zone)  Domain Research: ZCU Installation Exceeds 2 Million Units, Evolving Towards a "Plug-and-Play" Modular Platform The body (zone) domain covers BCM (Body Control Module), BDC (Body Dom...

Automotive Cockpit Domain Controller Research Report, 2025

Cockpit domain controller research: three cockpit domain controller architectures for AI Three layout solutions for cockpit domain controllers for deep AI empowerment As intelligent cockpit tran...

China Passenger Car Electronic Control Suspension Industry Research Report, 2025

Electronic control suspension research: air springs evolve from single chamber to dual chambers, CDC evolves from single valve to dual valves ResearchInChina released  "China Passenger Car Elect...

Automotive XR Industry Report, 2025

Automotive XR industry research: automotive XR application is still in its infancy, and some OEMs have already made forward-looking layout  The Automotive XR Industry Report, 2025, re...

Intelligent Driving Simulation and World Model Research Report, 2025

1. The world model brings innovation to intelligent driving simulation In the advancement towards L3 and higher-level autonomous driving, the development of end-to-end technology has raised higher re...

Autonomous Driving Map (HD/LD/SD MAP, Online Reconstruction, Real-time Generative Map) Industry Report 2025

Research on Autonomous Driving Maps: Evolve from Recording the Past to Previewing the Future with "Real-time Generative Maps" "Mapless NOA" has become the mainstream solution for autonomous driving s...

End-to-End Autonomous Driving Research Report, 2025

End-to-End Autonomous Driving Research: E2E Evolution towards the VLA Paradigm via Synergy of Reinforcement Learning and World Models??The essence of end-to-end autonomous driving lies in mimicking dr...

Research Report on OEMs and Tier1s’ Intelligent Cockpit Platforms (Hardware & Software) and Supply Chain Construction Strategies, 2025

Research on intelligent cockpit platforms: in the first year of mass production of L3 AI cockpits, the supply chain accelerates deployment of new products An intelligent cockpit platform primarily r...

Automotive EMS and ECU Industry Report, 2025

Research on automotive EMS: Analysis on the incremental logic of more than 40 types of automotive ECUs and EMS market segments In this report, we divide automotive ECUs into five major categories (in...

2005- www.researchinchina.com All Rights Reserved 京ICP备05069564号-1 京公网安备1101054484号