China Automotive Cybersecurity Hardware Research Report, 2022
  • Oct.2022
  • Hard Copy
  • USD $3,800
  • Pages:190
  • Single User License
    (PDF Unprintable)       
  • USD $3,600
  • Code: YSJ113
  • Enterprise-wide License
    (PDF Printable & Editable)       
  • USD $5,400
  • Hard Copy + Single User License
  • USD $4,000
      

Cybersecurity hardware research: security chip and HSM that meet the national encryption standards will build the automotive cybersecurity hardware foundation for China.

1. OEMs generally adopt the security chip + HSM strategy to build their cybersecurity protection system.

At the core of cybersecurity hardware are security chip and hardware security module (HSM).
Security chip, or secure element (SE), is an integrated circuit that integrates cryptographic algorithms and features physical attack prevention design.
Hardware security module (HSM) is a computer device used to protect and manage the keys and sensitive data applied by the strong authentication system, and also provide related cryptographic operations. It is the basic support for automotive security solutions.

At present, most OEMs employ the security chip + HSM strategy to build an automotive cybersecurity protection system.

For example, in its automotive cybersecurity security system, NIO uses security chips and HSM to reinforce hardware and networks; in terms of secure communication, the HSM and certificate system featuring integrity, encryption, pseudonymization and anonymity is the basis for enabling data privacy protection. In addition, bug fixes over the air (OTA) are available in the case of emergency. 

GAC completes the hardware security design and creates the four systems of border protection, automotive security, PKI certification & transmission, and security services, using security chip (SE) + HSM, and secure boot, trusted zone and encryption technologies. And at the vehicle end, GAC conducts in-depth research on vehicle inside and outside multi-node security protections, such as Linux OS for T BOX 4G module, Android OS for vehicle head unit, QNX OS for gateway and MCU, and communication interaction, aiming to establish an in-depth protection system for in-vehicle security.

2. Homemade SE chips are mass-produced and applied in vehicles.

As the US passed CHIPS Act, the localization of semiconductors in China assumes greater urgency. More chip equipment, materials and industrial software among others will be homemade. The cybersecurity hardware market is no exception. The need for local security chips that conform to the national encryption algorithms is a pressing problem.

In current stage, Tongxin Micro’s automotive-grade security chips are often used in the Internet of Vehicles, and are being tried out in small batches by Chinese manufacturers. They are expected to be mass-produced during 2023-2024. In the future, Tongxin Micro’s SE chips will head in the direction of vehicle controllers that meet higher vehicle driving safety and product performance requirements. Following the completion of development and testing of samples of key products in this series in 2022, the research and development is expected to be fulfilled around 2025.

anquan 硬件1-1_副本.png

anquan 硬件1-2_副本.png

Despite a large number of companies, their mass production capacity is limited. Only a few players like Tongxin Micro and CEC Huada Electronic Design have products largely mounted on vehicles in the OEM market. Nations Technologies has mass-produced products for the aftermarket covering T-BOX, driving recorder, vehicle diagnosis, in-vehicle infotainment and navigation, vehicle ambient lighting, and 360-degree panoramic view.  

Tongxin Micro was established by the national second-generation resident ID card chip R&D team at the Institute of Microelectronics of Tsinghua University. Its T9 Series security chips that were introduced into homegrown vehicle models in 2021 have been spawned and used in T-BOX, V2X, eUICC, China Phase VI OBD, and digital car keys, building a four-in-one trustworthy application environment for connected vehicles, that integrates cybersecurity, payment security, communication security, and identity authentication security.

Currently Tongxin Micro’s automotive-grade security chips are largely seen in the Internet of Vehicles, often not involving vehicle driving safety, with a relatively short assessment and certification cycle. Chinese manufacturers have the chips on trial in small batches, which are projected to be produced in quantities during 2023-2024. In the future, Tongxin Micro’s SE chips will head in the direction of vehicle controllers, involving high vehicle driving safety and product performance requirements, with a relatively long certification period. The key products in this series, with samples developed in 2022, are being tested, and the research and development is expected to be completed around 2025.

CEC Huada Electronic Design is a group company formed by CEC integrating its integrated circuit companies. In 2019, CEC Huada Electronic Design made a foray into telematics security chips. Its telematics solutions based on its high security SEs are led by: 

20120114.gifThe in-vehicle security involves the security protection of vehicle bus, ECU, OBD, TBOX and IVI system. The SEs deployed on key nodes guarantee the link security of the in-vehicle network and TSP platform.
20120114.gifFor V2X security, devices such as on-board unit (OBU) and roadside unit (RSU) use the integrated SEs to store the unique network access identifier, registration certificate and application certificate; the verification of communication message signatures is a solution to such problems as protocol cracking, illegal authentication and privacy leakage in the direct connection environment.

CEC Huada Electronic Design’s series of automotive-grade security chip products have been spawned and launched on market, with more than 8 million units having been pre-installed and deployed in commercial vehicles and passenger cars.

3. Most HSM players are foreign companies, and the SecIC-HSM based on national encryption algorithms will become an application direction.

HSM providers are mainly foreign companies including Thales, Entrust Datacard, Utimaco, ATOS SE, Exceet Secure Solutions GmbH, Securosys, Ultra Electronics, Synopsys, Futurex, Marvell Technology Group, and Yubico. Typical application solutions are also from these foreign players, for example, the HSM framework in Infineon's AURIX chip and Vector's HSM firmware solution.

In the context of the hindered global semiconductor industry chain, the demand for homemade HSM and solutions in China is bound to rise. Westone and Sansec are among the few HSM providers in China. The SecIC-HSM Series security modules created by Shanghai Uni-Sentry adopt the HSM security stack that uses national encryption algorithms, support mainstream chips used in production vehicle models, and are compatible with chips of NXP and ST and domestic mainstream domain controllers, meeting the technical requirements of vehicle controller security.

anquan 硬件2_副本.png

4. The providers of software and hardware integrated solutions walk at a faster pace in application to vehicles.

In terms of mass production, providers of software and hardware integrated solutions go ahead of simple SE chip vendors.

Since 2015, Zhengzhou Xinda Jiean Information Technology Co., Ltd. has signed agreements with BYD, AIWAYS, BAIC, Ingeek and Suzhou Zhito Technology among others, providing customized cybersecurity solutions as they require.

anquan 硬件3_副本.png

In addition, Xinda Jiean provides V2X security chips that comply with national encryption standards and supporting security services for its partners Huawei and Lear, in a bid to support Audi’s next-generation V2X intelligent connected vehicle project.

anquan 硬件4_副本.png

China Automotive Cybersecurity Hardware Research Report, 2022 combs through China’s automotive cybersecurity hardware system and highlights the following:
20120114.gifAutomotive cybersecurity system architecture and the range of key hardware products, with vehicle systems as the main object;
20120114.gifCybersecurity policies, regulations and standard systems (the main content and certification process of ISO21434 and R155, and the process and planning of Chinese standards and regulations);
20120114.gifAutomotive SE security chips (features, application scenarios, and major Chinese and foreign vendors);
20120114.gifFeatures and application solutions of automotive hardware security module (HSM);
20120114.gifOEMs’ construction of cybersecurity systems and application of hardware modules.

1 Overview of Automotive Cybersecurity Industry
1.1 Definition of Automotive Cybersecurity 
1.2 In the Trend for Intelligent Connection, Automotive Cybersecurity Plays An Increasingly Important Role 
1.3 Requirements of Key Components for Cybersecurity
1.4 Automotive Cybersecurity Architecture
1.5 Automotive Cybersecurity Industry Chain
1.6 The Range of Automotive Cybersecurity Hardware Products
1.7 Development Trends of Automotive Cybersecurity
 
2 Policies & Regulations and Standard Certification
2.1 Global Policies and Regulations
2.2 ISO/SAE 21434 Standard
2.3 Certification Process of ISO 21434
2.4 R155 Standard
2.5 Certification Process of R155
2.6 The Role of ISO 21434 and R155/156 in Promoting the Industry Chain
2.7 China’s Policy Environment
2.8 China’s Standard System 

3 Security Chip
3.1 Definition and Functions
3.2 Architecture
3.3 Key Technologies
3.4 Advantages
3.5 Application Scenarios of Security Chips in Automotive 
3.6 Product Forms
3.7 Major Companies 
3.8 Main Content of Chip Security
3.8.1 Common Chip Attack Methods
3.8.2 Boot Security (1)
3.8.3 Boot Security (2)
3.8.4 Secure Storage
3.8.5 Secure Diagnostics
3.8.6 Secure Runtime Environment
3.9 Security Chip Burning Solutions 
3.10 Security Chip Testing Technology
3.11 Certification of Automotive Security Chip Products 
3.12 Development Trends
3.13 Application of China’s Homemade Security Chips

4 HSM
4.1 Definition 
4.2 Classification
4.3 Architecture
4.4 Firmware
4.5 Solutions and Application
4.6 Trustzone and HSM
4.7 Providers 

5 Cybersecurity Construction and Hardware Selection of OEMs
5.1 Summary of Cybersecurity Layout and Hardware Security Strategies of China’s Local OEMs
5.2 Cybersecurity Layout of Conventional OEMs
5.2.1 Dongfeng Motor
5.2.2 SAIC
5.2.3 BAIC
5.2.4 GAC
5.2.5 FAW
5.2.6 Great Wall Motor
5.2.7 Changan Automobile
5.2.8 BYD
5.3 Cybersecurity Layout of Emerging OEMs
5.3.1 Xpeng Motors
5.3.2 NIO
5.3.3 Li Auto
5.4 Recommendations from OEMs

6 Automotive Cybersecurity Hardware Suppliers
6.1 ST
6.1.1 Cybersecurity Hardware Layout 
6.1.2 Application Fields of Cybersecurity Hardware
6.1.3 Main Products
6.1.4 Solutions
6.2 Infineon
6.2.1 Cybersecurity Hardware Products
6.2.2 Main Customers
6.3 NXP
6.3.1 Security MCU
6.3.2 Secure Gateway Controllers
6.3.3 Advanced Encryption and Decryption Engine
6.3.4 Cryptographic Engine of Dedicated Algorithms
6.4 Renesas
6.5 TI
6.6 G+D Mobile Security
6.7 Tongxin Micro
6.8 CEC Huada Electronic Design
6.9 Tianjin C*Core Technology
6.10 Fudan Microelectronics
6.11 Nations Technologies
6.12 Hongsi Electronic Technology
6.13 Datang Microelectronics
6.14 Thinktech
6.15 Suzhou C*Core Technology
6.16 Xinda Jiean
6.17 Vecentek
6.18 INCHTEK 
6.19 Uni-Sentry
6.20 Sansec
 

Smart Car Information Security (Cybersecurity and Data Security) Research Report, 2025

Research on Automotive Information Security: AI Fusion Intelligent Protection and Ecological Collaboration Ensure Cybersecurity and Data Security At present, what are the security risks faced by inte...

New Energy Vehicle 800-1000V High-Voltage Architecture and Supply Chain Research Report, 2025

Research on 800-1000V Architecture: to be installed in over 7 million vehicles in 2030, marking the arrival of the era of full-domain high voltage and megawatt supercharging. In 2025, the 800-1000V h...

Foreign Tier 1 ADAS Suppliers Industry Research Report 2025

Research on Overseas Tier 1 ADAS Suppliers: Three Paths for Foreign Enterprises to Transfer to NOA Foreign Tier 1 ADAS suppliers are obviously lagging behind in the field of NOA. In 2024, Aptiv (2.6...

VLA Large Model Applications in Automotive and Robotics Research Report, 2025

ResearchInChina releases "VLA Large Model Applications in Automotive and Robotics Research Report, 2025": The report summarizes and analyzes the technical origin, development stages, application cases...

OEMs’ Next-generation In-vehicle Infotainment (IVI) System Trends Report, 2025

ResearchInChina releases the "OEMs’ Next-generation In-vehicle Infotainment (IVI) System Trends Report, 2025", which sorts out iterative development context of mainstream automakers in terms of infota...

Autonomous Driving SoC Research Report, 2025

High-level intelligent driving penetration continues to increase, with large-scale upgrading of intelligent driving SoC in 2025 In 2024, the total sales volume of domestic passenger cars in China was...

China Passenger Car HUD Industry Report, 2024

ResearchInChina released the "China Passenger Car HUD Industry Report, 2025", which sorts out the HUD installation situation, the dynamics of upstream, midstream and downstream manufacturers in the HU...

ADAS and Autonomous Driving Tier 1 Suppliers Research Report, 2025 – Chinese Companies

ADAS and Autonomous Driving Tier 1 Suppliers Research Report, 2025 – Chinese Companies Research on Domestic ADAS Tier 1 Suppliers: Seven Development Trends in the Era of Assisted Driving 2.0 In the ...

Automotive ADAS Camera Report, 2025

①In terms of the amount of installed data, installations of side-view cameras maintain a growth rate of over 90%From January to May 2025, ADAS cameras (statistical scope: front-view, side-view, surrou...

Body (Zone) Domain Controller and Chip Industry Research Report,2025

Body (Zone)  Domain Research: ZCU Installation Exceeds 2 Million Units, Evolving Towards a "Plug-and-Play" Modular Platform The body (zone) domain covers BCM (Body Control Module), BDC (Body Dom...

Automotive Cockpit Domain Controller Research Report, 2025

Cockpit domain controller research: three cockpit domain controller architectures for AI Three layout solutions for cockpit domain controllers for deep AI empowerment As intelligent cockpit tran...

China Passenger Car Electronic Control Suspension Industry Research Report, 2025

Electronic control suspension research: air springs evolve from single chamber to dual chambers, CDC evolves from single valve to dual valves ResearchInChina released  "China Passenger Car Elect...

Automotive XR Industry Report, 2025

Automotive XR industry research: automotive XR application is still in its infancy, and some OEMs have already made forward-looking layout  The Automotive XR Industry Report, 2025, re...

Intelligent Driving Simulation and World Model Research Report, 2025

1. The world model brings innovation to intelligent driving simulation In the advancement towards L3 and higher-level autonomous driving, the development of end-to-end technology has raised higher re...

Autonomous Driving Map (HD/LD/SD MAP, Online Reconstruction, Real-time Generative Map) Industry Report 2025

Research on Autonomous Driving Maps: Evolve from Recording the Past to Previewing the Future with "Real-time Generative Maps" "Mapless NOA" has become the mainstream solution for autonomous driving s...

End-to-End Autonomous Driving Research Report, 2025

End-to-End Autonomous Driving Research: E2E Evolution towards the VLA Paradigm via Synergy of Reinforcement Learning and World Models??The essence of end-to-end autonomous driving lies in mimicking dr...

Research Report on OEMs and Tier1s’ Intelligent Cockpit Platforms (Hardware & Software) and Supply Chain Construction Strategies, 2025

Research on intelligent cockpit platforms: in the first year of mass production of L3 AI cockpits, the supply chain accelerates deployment of new products An intelligent cockpit platform primarily r...

Automotive EMS and ECU Industry Report, 2025

Research on automotive EMS: Analysis on the incremental logic of more than 40 types of automotive ECUs and EMS market segments In this report, we divide automotive ECUs into five major categories (in...

2005- www.researchinchina.com All Rights Reserved 京ICP备05069564号-1 京公网安备1101054484号